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Exercice 1 : Valeurs propres et vecteurs propres d’une matrice

Les valeurs propres de M sont obtenues en résolvant I’équation :

det(M —X1)=0 = (1-)\)?—-2i=0
— )\1:2+Zet>\2:—l

On peut aisément déterminer deux vecteurs propres 7172 correspondant aux valeurs propres

A1,2 en résolvant :

U1 = (1,1 = )" et ¥y = (1,—1 + i)" sont deux vecteurs propres possibles correspondant aux
valeurs propres A\; ety respectivement.

Exercice 2 : La transformée de Fourier

On peut utiliser dans les deux cas la transformée de Fourier pour une fonction non périodique :

00
Flw) = \/% / F(t)e " dt

a) Nous obtenons :

r
2

1 ) A T Al ) )
F(w) — / Aefzwt dt = [_ eflwt] 2= s (efsz/Z o e'LwT/2)
Vam J-T wy 2T T w2

En utilisant le formalisme d’Euler pour les nombres complexes :

exp(iwt) = cos(wt) + isin(wt)

on a

exp(iwt) — exp(—iwt) = 2i sin(wt)
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Il s’ensuit que

iA(—2isin(wT'/2))  2A sin(wT/2)
wV 2 B Vor w

Les zéros de la fonction F'(w) se trouvent a des valeurs de w,, donnés par w,T/2 = 7n autrement

F(w) =

dit w, = 27n/T. Les extrema seront déterminés par ’expression suivante, qui n’est rien d’autre
que la dérivée de F(w) par rapport a w :

Tcos(wT'/2)  sin(wT'/2)
2w w?

=0
Les fréquences des extrema sont donc données par les solutions de I’équation transcendante

T
tan(wT'/2) = %

Le maximum le plus grand correspond a w = 0, ou F(0) = \‘/4—2%

b) On va calculer séparément les valeurs positives et négatives du temps.
Cas1:1<0

F(w) = ! /0 Aeem ™t dt = A /0 elo=it gt = A e
V2 ) e Vo)  (a—iw)V2r

(afiw)t]()

0 (a —iw)V2r

Cas2:t>0

F(w) = L /JrOO Aerteiot gy — A /0 elmet 4t = 4 €
V21 Jo V271 J o (—a —iw)V2m

La transformée de Fourier est donc donnée par

A A 2aA

(7afiw)t] +oo __

Flw) = — =
) (@ —iw)V2r  (—a—iw)V2r  V271(a® + w?)
Il s’agit d'une Lorentzienne : le seul maximum spectral se trouve a w = 0 et vaut F/(0) = 22’;,
et la largeur spectrale (donc la fréquence pour laquelle 'amplitude est tombée & moité) est égale a
w=a:F(a)= ﬁ = F(0)/2. La fonction est illustrée ci-dessous pour a=1.






Exercice 3 : L’equation d’onde

1. Calculons les deux dérivées :

CPf(xt) D

—H = a_(ikei(kx_wkt)) — 2k —wpt)
T T
M = —iw ei(kz—wkt)

ot "

En remplacant dans I’équation différentielle et en simplifiant ’exponentielle, on a w;, = k2,
qui est la relation requise afin que f(x,t) = e'**=“*) soit une solution.

2. Posons la condition initiale

oo CA(k) 1 22
R AP S

fw,0) = o0 V21 (27?02)i

Nous allons calculer la transformée de Fourier a droite et & gauche de I'égalité.
Commencons par la gauche :

+o0 —ik'z  p+oo A(k) . +o0 Alk +o0 ] ,
/ dZEe / dk ( )6za:k _ dk ( ) / dl,ez(k:—k )x
oo V21 J_s V2 oo 2 J_o
L’intégrale en dz est connue de la théorie des fonctions généralisées. Il vaut 2mwd(k — k') ou
d(z) est la fonction généralisée delta de Dirac. On a donc finalement :

— / - dkA(k)o(k — k') = A(K)

o0
Calculons maintenant la transformée de Fourier du terme de droite. On doit calculer :

1 1 +oo o g
(2m0)3 V/2r / dre i

On va compléter le carré a l'exposant :

2 2

z Ly T -y 27.2 272\ L AV 272 ($+2w2k)2 27.2
—@—zkx——(@—zkx—ak +0'/{?)——(%+ZO']{Z> — o’k ——T—Uk‘
L’intégrale devient donc :

1 1 o2k? +oo _ (z+2i02k)?

dxe 402

———e
(2mo)s V21 —0

Pour calculer cette intégrale, on peut calculer une intégrale de contour dans le plan complexe :

+oo
/ dxe—p(x—l—c)2 :

o0



avec p, c€ C

Im(x)

contour I

j{ep(”c)Q dzr =0
r

Car la fonction est analytique dans le contour.
Intégrale sur les deux segments verticaux :

Re(x)—X—>:|:oo:>/%O

4T . _7 .
/ dxe P* —|—/ dze Plet2)” —
— T

T
+T +T

:>/ dae P+ :/ dxe Plete)’
_T _

T

On a donc que :

Pour finir, on a :
U\/§ o2k2 202 1 022
—e P —

(27021 T

A(k) =

Exercice 4 : Analyse dimensionnelle : la pendule

On remarque que g est une accélération. Elle a les dimensions d’une longueur divisée par un
temps au carré : LT~2. Les deux autres grandeurs ont les dimensions d’'une longueur est d'une
masse respectivement. Si on multiplie les trois grandeurs élevées a des puissances a déterminer, on
obtient les dimensions suivantes :
l:vmygz _ La:MyLzT—2z _ Lz—l—zMyT—Qz
On souhaite obtenir une période, donc un temps T. On pose donc

r+2=0
y=20
—2z=1
1
5
La période sera donc T' = C' \/g et C est une constante sans dimension. En effet, on sait que pour

PRRN _ 1 _
douz=—35,x=

5
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En physique, trés souvent les constantes sans dimensions qui interviennent dans l’analyse dimen-

sionnelle, sont de l'ordre de I'unité. Si dans une théorie, une telle constante doit prendre une valeur
trés grande ou trés petite (par rapport a 1) pour expliquer les observations expérimentales, alors
on dit que la théorie n’est pas "naturelle". Dans ce cas, souvent, une meilleure théorie existe.

des petits angles d’oscillation, on a T' ~ 27r\/z.

Exercice 5 : Analyse dimensionnelle : les dimensions de la constante de Planck

Une fonction transcendante, comme par exemple ’exponentielle y = e*, admet une expansion
en série avec un nombre infini de termes :
2 3
y=e"=l+x+5+5+..

Puisqu’on ne peut pas sommer des quantités de dimensions physiques différentes, tous les termes

de cette série doivent étre sans dimensions, comme le premier. Il faut donc que % soit sans dimen-

sions. Mais [E] = ML2T~2. L
Si on pose h = M®LYT?, on a ML*T' = M*I¥T?*, doutz =1,y =2, z = —1.
Finalement, les dimensions de A sont [h] = M L*T~!.

Exercice 6 : Analyse dimensionnelle : Energie de I’explosion d’une bombe atomique

Il est raisonnable que, a l'instant zéro, I’énergie est concentrée dans un petit volume et produise
dans les instants qui suivent une onde de choc qui s’étale avec une forme sphérique.
Les quantités physiques en question sont r, ¢, E et p. Les dimensions des deux derniéres sont :
[E] = ML*T?
[p] = ML™?
On peut donc poser que le rayon r de ’explosion est fonction de ¢, F et p.
On pose :

r=Cp"EYt*

L’analyse dimensionnelle donne :
L= (ML?)*(ML*T*¥T*

D’ou on déduit :
1=-3x+2y
O=x+vy
0=—-2y+=z2

On peut résoudre par substitution :

<
|
GUNUT = |
(S

1 1 2
Donc r = Cp 5 E5t5.
5 . .
On peut résoudre pour F : E = C'=£ ou C’ est une autre constante sans dimension. A remarquer
t

6



que si C' = 1, alors " &~ 1 aussi. Il s’avére que la constante C’ dans ce cas est trés proche 1, si on
la dérive d'une théorie physique. De la figure, on estime r &~ 120 m a ¢t = 0.025 sec. On a donc :

E=C"-498-10" Joules
E ~5-10" Joules
FE ~ 12 kilotonnes

La vraie énergie de cette bombe était de 20 kilotonnes, en bon accord avec cette analyse dimen-
sionnelle.

Exercice 7 : Question de type examen

La réponse correcte est la réponse D. S’agissant du rapport entre deux quantités homogénes
(mémes dimensions), le rapport doit étre sans dimensions. Ceci permet d’exclure automatiquement
les réponses B, C, et E (cette derniére est aussi fausse car les deux termes entre parenthéses ne sont
pas homogenes). Dans la limite de grand A, le rapport hc/AkgT devient petit, et une expansion de
Taylor au plus bas ordre non nul des exponentielles dans les deux quantités donné immédiatement
la réponse D cherchée.



