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Exercice 1 : Valeurs propres et vecteurs propres d’une matrice

Les valeurs propres de M sont obtenues en résolvant l’équation :

det(M − λ1) = 0 =⇒ (1− λ)2 − 2i = 0

=⇒ λ1 = 2 + i et λ2 = −i

On peut aisément déterminer deux vecteurs propres −→v 1,2 correspondant aux valeurs propres
λ1,2 en résolvant :

M−→v i = λi
−→v i

−→v 1 = (1, 1 − i)T et −→v 2 = (1,−1 + i)T sont deux vecteurs propres possibles correspondant aux
valeurs propres λ1 etλ2 respectivement.

Exercice 2 : La transformée de Fourier

On peut utiliser dans les deux cas la transformée de Fourier pour une fonction non périodique :

F (ω) =
1√
2π

∫ +∞

−∞
f(t)e−iωt dt

a) Nous obtenons :

F (ω) =
1√
2π

∫ T
2

−T
2

Ae−iωt dt = [− A

iω
√

2π
e−iωt]

T
2

−T
2

=
Ai

ω
√

2π
(e−iωT/2 − eiωT/2)

En utilisant le formalisme d’Euler pour les nombres complexes :

exp(iωt) = cos(ωt) + i sin(ωt)

on a

exp(iωt)− exp(−iωt) = 2i sin(ωt)
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Il s’ensuit que

F (ω) =
iA(−2i sin(ωT/2))

ω
√

2π
=

2A√
2π

sin(ωT/2)

ω

Les zéros de la fonction F (ω) se trouvent à des valeurs de ωn donnés par ωnT/2 = πn autrement

dit ωn = 2πn/T . Les extrema seront déterminés par l’expression suivante, qui n’est rien d’autre
que la dérivée de F (ω) par rapport à ω :

T cos(ωT/2)

2ω
− sin(ωT/2)

ω2
= 0

Les fréquences des extrema sont donc données par les solutions de l’équation transcendante

tan(ωT/2) =
ωT

2

Le maximum le plus grand correspond à ω = 0, où F (0) = AT√
2π

b) On va calculer séparément les valeurs positives et négatives du temps.
Cas 1 : t < 0

F (ω) =
1√
2π

∫ 0

−∞
Aeate−iωt dt =

A√
2π

∫ 0

−∞
e(a−iω)t dt =

A

(a− iω)
√

2π
[e(a−iω)t]0−∞ =

A

(a− iω)
√

2π

Cas 2 : t > 0

F (ω) =
1√
2π

∫ +∞

0

Ae−ate−iωt dt =
A√
2π

∫ 0

−∞
e(−a−iω)t dt =

A

(−a− iω)
√

2π
[e(−a−iω)t]+∞0 =

−A
(−a− iω)

√
2π

La transformée de Fourier est donc donnée par

F (ω) =
A

(a− iω)
√

2π
− A

(−a− iω)
√

2π
=

2aA√
2π(a2 + ω2)

Il s’agit d’une Lorentzienne : le seul maximum spectral se trouve à ω = 0 et vaut F (0) = 2A√
2πa

,
et la largeur spectrale (donc la fréquence pour laquelle l’amplitude est tombée à moité) est égale à
ω = a : F (a) = A√

2πa
= F (0)/2. La fonction est illustrée ci-dessous pour a=1.
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Exercice 3 : L’equation d’onde

1. Calculons les deux dérivées :

−∂
2f(x, t)

∂x2
=

∂

∂x
(ikei(kx−ωkt)) = −k2ei(kx−ωkt)

∂f(x, t)

∂t
= −iωnei(kx−ωkt)

En remplaçant dans l’équation différentielle et en simplifiant l’exponentielle, on a ωk = k2,
qui est la relation requise afin que f(x, t) = ei(kx−ωkt) soit une solution.

2. Posons la condition initiale

f(x, 0) =

∫ +∞

−∞
dk
A(k)√

2π
eixk =

1

(2πσ2)
1
4

e−
x2

4σ2

Nous allons calculer la transformée de Fourier à droite et à gauche de l’égalité.
Commençons par la gauche :∫ +∞

−∞
dx
e−ik

′x

√
2π

∫ +∞

−∞
dk
A(k)√

2π
eixk =

∫ +∞

−∞
dk
A(k)

2π

∫ +∞

−∞
dxei(k−k

′)x

L’intégrale en dx est connue de la théorie des fonctions généralisées. Il vaut 2πδ(k − k′) où
δ(x) est la fonction généralisée delta de Dirac. On a donc finalement :

=

∫ +∞

−∞
dkA(k)δ(k − k′) = A(k′)

Calculons maintenant la transformée de Fourier du terme de droite. On doit calculer :

1

(2πσ)
1
4

1√
2π

∫ +∞

−∞
dxe−

x2

4σ2
−ik′x

On va compléter le carré à l’exposant :

− x2

4σ2
− ik′x = −(

x2

4σ2
− ik′x− σ2k2 + σ2k2) = −(

x

2σ
+ iσk)2− σ2k2 = −(x+ 2iσ2k)2

4σ2
− σ2k2

L’intégrale devient donc :

1

(2πσ)
1
4

1√
2π
e−σ

2k2
∫ +∞

−∞
dxe−

(x+2iσ2k)2

4σ2

Pour calculer cette intégrale, on peut calculer une intégrale de contour dans le plan complexe :∫ +∞

−∞
dxe−p(x+c)2 ,
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avec p, c ∈ C

Re(x)

x−x

contour Γ

Im(x)

c

∮
Γ

e−p(x+c)2 dx = 0

Car la fonction est analytique dans le contour.
Intégrale sur les deux segments verticaux :

Re(x) = X → ±∞⇒
∫
→ 0

On a donc que : ∫ +T

−T
dxe−px

2

+

∫ −T
T

dxe−p(c+x)2 = 0

⇒
∫ +T

−T
dxe−px

2

=

∫ +T

−T
dxe−p(c+x)2 =

√
π

p

Pour finir, on a :

A(k) =
σ
√

2

(2πσ2)
1
4

e−σ
2k2 = (

2σ2

π
)
1
4 e−σ

2k2

Exercice 4 : Analyse dimensionnelle : la pendule

On remarque que g est une accélération. Elle a les dimensions d’une longueur divisée par un
temps au carré : LT−2. Les deux autres grandeurs ont les dimensions d’une longueur est d’une
masse respectivement. Si on multiplie les trois grandeurs élevées à des puissances à déterminer, on
obtient les dimensions suivantes :
lxmygz = LxMyLzT−2z = Lx+zMyT−2z

On souhaite obtenir une période, donc un temps T. On pose donc
x+ z = 0
y = 0
−2z = 1

d’où z = −1
2
, x = 1

2
.

La période sera donc T = C
√

l
g
et C est une constante sans dimension. En effet, on sait que pour
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des petits angles d’oscillation, on a T ≈ 2π
√

l
g
.

En physique, très souvent les constantes sans dimensions qui interviennent dans l’analyse dimen-
sionnelle, sont de l’ordre de l’unité. Si dans une théorie, une telle constante doit prendre une valeur
très grande ou très petite (par rapport à 1) pour expliquer les observations expérimentales, alors
on dit que la théorie n’est pas "naturelle". Dans ce cas, souvent, une meilleure théorie existe.

Exercice 5 : Analyse dimensionnelle : les dimensions de la constante de Planck

Une fonction transcendante, comme par exemple l’exponentielle y = ex, admet une expansion
en série avec un nombre infini de termes :
y = ex = 1 + x+ x2

2!
+ x3

3!
+ ...

Puisqu’on ne peut pas sommer des quantités de dimensions physiques différentes, tous les termes
de cette série doivent être sans dimensions, comme le premier. Il faut donc que Et

~ soit sans dimen-
sions. Mais [E] = ML2T−2.
Si on pose ~ = MxLyT z, on a ML2T−1 = MxLyT z, d’où x = 1, y = 2, z = −1.
Finalement, les dimensions de ~ sont [~] = ML2T−1.

Exercice 6 : Analyse dimensionnelle : Energie de l’explosion d’une bombe atomique

Il est raisonnable que, à l’instant zéro, l’énergie est concentrée dans un petit volume et produise
dans les instants qui suivent une onde de choc qui s’étale avec une forme sphérique.
Les quantités physiques en question sont r, t, E et ρ. Les dimensions des deux dernières sont :
[E] = ML2T−2

[ρ] = ML−3

On peut donc poser que le rayon r de l’explosion est fonction de t, E et ρ.
On pose :

r = CρxEytz

L’analyse dimensionnelle donne :

L = (ML−3)x(ML2T−2)yT z

D’où on déduit : 
1 = −3x+ 2y
0 = x+ y
0 = −2y + z

On peut résoudre par substitution : 
x = −1

5

y = 1
5

z = 2
5

Donc r = Cρ−
1
5E

1
5 t

2
5 .

On peut résoudre pour E : E = C ′ r
5ρ
t2

où C’ est une autre constante sans dimension. A remarquer
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que si C ≈ 1, alors C ′ ≈ 1 aussi. Il s’avère que la constante C’ dans ce cas est très proche 1, si on
la dérive d’une théorie physique. De la figure, on estime r ≈ 120 m à t = 0.025 sec. On a donc :

E = C ′ · 4.98 · 1013 Joules
E ≈ 5 · 1013 Joules
E ≈ 12 kilotonnes

La vraie énergie de cette bombe était de 20 kilotonnes, en bon accord avec cette analyse dimen-
sionnelle.

Exercice 7 : Question de type examen

La réponse correcte est la réponse D. S’agissant du rapport entre deux quantités homogènes
(mêmes dimensions), le rapport doit être sans dimensions. Ceci permet d’exclure automatiquement
les réponses B, C, et E (cette dernière est aussi fausse car les deux termes entre parenthèses ne sont
pas homogènes). Dans la limite de grand λ, le rapport hc/λkBT devient petit, et une expansion de
Taylor au plus bas ordre non nul des exponentielles dans les deux quantités donné immédiatement
la réponse D cherchée.
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